"Comparison of Drug and Cell-Based Delivery: Engineered Adult Mesenchymal Stem Cells Expressing Soluble Tumor Necrosis Factor Receptor II Prevent Arthritis in Mouse and Rat Animal Models"
Tumor necrosis factor-α (TNFα) is a cytokine that mediates normal homeostatic mammalian processes (Schaible et al and Wajant et al) but has been linked to the systemic autoimmune disease Rheumatoid Arthritis (RA), where a TNFα induced cytokine cascade causes inflammation and joint destruction. Blocking TNFα function would therefore seem a viable means to treat RA. Etanercept, a TNF receptor (TNFR) linked to the immunoglobin Fc fragment and two monoclonal antibodies, infliximab and adalimumab are three TNFα inhibitors approved in the United States (Mazza et al), while TNFα blockers certolizumab pegol and golimumab are also utilised (Wallis and Scallon et al). However, the necessity for systemic delivery leads to certain unwanted side-effects, and so site-specific drug action is being sought after. To this end, in a report in Stem Cells Translational Medicine, researchers led by Joseph D. Mosca at Osiris Therapeutics, Inc., Baltimore, Maryland, USA have published the results of their studies on the potential use of mesenchymal stem cell (MSC)-based TNFR delivery and the efficacy of this treatment compared to the use of etanercept (Liu et al).