You are here

Vitamin deficiency puts cancer cells into hibernation



Cancer stem cells can be put “into hibernation” by a little-known drug called diphenyleniodonium (DPI) according to researchers from the University of Salford, UK.

DPI effectively switches off the cancer stem cells, preventing their proliferation.

“It’s extraordinary; the cells just sit there as if in a state of suspended animation,” explained Michael Lisanti, M.D., Ph.D., chair of translational medicine and lead investigator.

The discovery is significant because the drug halts the propagation of cancer stem cells without causing the toxic side effects normally associated with more conventional chemotherapy.

Reporting their laboratory findings in the journal Aging, the team observed that the addition of DPI to a mixed population of cells eliminated the tumor-initiating cancer stem cells. However, the drug was non-toxic for “bulk” cancer cells, which are not thought to be cancer-forming.

The authors describe how DPI targets more than 90 protein enzymes, which feed mitochondria and help generate the cell’s energy. Specifically, DPI works as an inhibitor of Vitamin B2 — riboflavin — starving the cells of the energy.

“Our observation is that DPI is selectively attacking the cancer stem cells by effectively creating a vitamin deficiency,” explained Dr. Lisanti. “In other words, by turning off energy production in cancer stem cells we are creating a process of hibernation.

“The beauty of this is that DPI makes the cancer stem cells metabolically inflexible so they will be highly susceptible to a many other drugs.”

Chemotherapy produces many nasty side effects because it helps create toxic-free radicals. However, DPI did not increase free radicals.

The Salford team, which specializes in the discovery of new non-toxic therapies and has published substantially on the anticancer impacts of Vitamin C and antibiotics, is calling the discovery the start of a new type of chemotherapy — “mitoflavoscins.”

“In terms of chemotherapies for cancer, we clearly need something better than what we have at present, and this is hopefully the beginning of an alternative approach to halting cancer stem cells,” commented Federica Sotgia, Ph.D., senior lecturer in Salford’s Institute of Cancer Sciences and a co-author of the study.

Learn more:

DOI: 10.18632/aging.101351