You are here

Eggshell particles used to grow bone tissue in the lab

LOWELL, MA (US), July 2019 — Crushed or pulverized eggshells have dozens of practical uses — as a natural calcium supplement, a coffee sweetener, a treatment for minor skin irritations, a nontoxic abrasive cleaner or for garden compost and pest control, just to name a few.

Now, a team of University of Massachusetts Lowell (UMass Lowell) researchers led by Gulden Camci-Unal, Ph.D., of the Department of Chemical Engineering, has developed an innovative way of using powdered eggshells — which are composed mainly of calcium carbonate crystals — for engineering bone tissue that could lead to improved results for bone repair and healing. 

The researchers are using microscopic eggshell particles to reinforce gelatin-based hydrogels, which then serve as stable 3D scaffolds for growing bone cells called osteoblasts.

Dr. Camci-Unal says this technique can be applied to treat and repair bones in patients who have suffered injuries due to aging, cancer and other diseases, as well as in accidents or in combat. The 3D structure can also be used to grow not only bone for bone grafts, but also cartilage, teeth and tendons, she says.

“This is the first study that uses eggshell particles in a hydrogel matrix for bone repair,” Dr. Camci-Unal noted.

The team’s findings are published in Biomaterials Science.

According to Dr. Camci-Unal, more than 2 million bone-graft procedures are performed each year worldwide. “Bone repair is crucial to restoring a patient’s functionality and self-esteem following an injury,” she said.

However, she notes that there are limitations to existing bone-graft materials and procedures, including the risk for infection, rejection by the body’s immune system and the limited availability of bone donors. 

“Global waste of discarded eggshells typically amounts to millions of tons annually from household and commercial cooking,” she added. “By repurposing the eggshells, we can directly benefit the economy and the environment while providing a sustainable solution to unmet clinical needs. Despite being readily available and inexpensive, the valuable potential of eggshells in bioengineering applications remains greatly understudied.”

She said the team’s experiments demonstrate that their eggshell particle-reinforced biomaterial can significantly increase the mineralization by the bone cells compared to using hydrogels alone, resulting in faster healing. Also, since the biomaterial is combined with cells obtained from the patient and then cultured and allowed to mature in a tissue incubator before being implanted into the patient, problems of rejection by the patient’s immune system are not expected using this method, she said.

Dr. Camci-Unal pointed out that eggshell particles can also be incorporated easily into 3D scaffolds in a range of new biomedical applications. 

The microscopic eggshell particles are used to reinforce gelatin-based hydrogels, which then serve as stable 3D scaffolds for growing bone cells, called osteoblasts.

"For example, our eggshell particle-reinforced scaffolds can potentially be useful in dental implants as well as in reconstructive surgeries of the skull, jaw and face,” she said. “In addition to its role in tissue regeneration, eggshell particles can also be used as a possible vehicle for delivering small molecules such as growth factors, proteins, peptides, genes and therapeutic drugs.”

Learn more:
https://www.uml.edu/News/stories/2019/Camci-Unal-eggshell-bioengineering.aspx
DOI:10.1039/C9BM00230H